Разширено оборудване за интегриране на окисляване: Ефикасни решения
Меню
Последни новини
Представяне на продукта
Всички работни параметри на усъвършенстваното интегрирано оборудване за окисляване са оптимизирани и то може да работи автоматично или полу-ръчно или ръчно според търсенето. Основните компоненти на оборудването, UV лампата, са оптимизирани по отношение на избора на мощност или самата лампа. В сравнение с традиционните UV системи за пречистване на отпадъчни води, общата мощност на UV лампата е намалена с повече от 80%, а оперативните и инвестиционните разходи са ниски. Намаляването на UV лампата намалява трудността на поддръжката на системата.
Състав на продукта
Основната система от усъвършенствано интегрирано оборудване за окисление е ултравиолетово фотокаталитично оборудване, а останалата част се състои от помпа, инструмент, електронна система за управление, клапан, тръбопровод и други системи около ултравиолетовото фотокаталитично оборудване.
Предимство на продукта
Приемете нова технология, за да отговаряте на различни стандартни изисквания.
Широк диапазон на приложение: всички видове органични отпадъчни води или отпадъчни води с йони на тежки метали, без специфични ограничения за типа.
За постигане на плъзгащ модулен комбиниран дизайн, монтаж и демонтаж бърз и удобен, малък отпечатък, кратък период на изграждане.
Системата е стабилна, енергийна-спестяване, висока степен на автоматизация, лесен за работа.
Удобна поддръжка и управление, по-ниски инвестиционни и експлоатационни разходи.
Няма ограничение за замърсителите, които са ограничени само от оперативните разходи.
Технически принцип на
Аусъвършенствани окислителни процеси (AOPs) Технологията, известна също като технология на дълбоко окисление, се характеризира с генериране на свободни радикали със силен окислителен капацитет (хидроксилен радикал (·ОХ), сулфатен радикал (ТАКА-4 ·) и супероксиден анионен радикал (О-2 ·)и т.н.). Това е метод за окислително разграждане на органична материя при условия на висока температура и налягане, електричество, светлина или/и катализатор. Според начина на генериране на свободни радикали и различните реакционни условия, той може да бъде разделен на фотокаталитично окисление, мокро окисление, акустохимично окисление, озоново окисление, електрохимично окисление, окисление на Fenton и т.н.
UV/Fenton process е технология на дълбоко окисление, тоест верижната реакция между Fe2+ и H2O2 се използва за катализиране на образуването на ОН свободни радикали. OH свободните радикали имат силни окислителни свойства и могат да окисляват различни токсични и трудни вещества-към-разграждат органичните съединения, за да постигнат целта за отстраняване на замърсители. Той е особено подходящ за окислително третиране на органични отпадъчни води, които са трудни за биоразграждане или общото химическо окисление е трудно за работа. Основните фактори, влияещи върху третирането на инфилтрата от сметищата от UV/Fenton процесss са рН, доза H2O2 и доза желязна сол.
Само от гледна точка на настоящата инженерна практика, UV/Fenton method е най-обещаващият сред модерните методи за окисление. Основните предимства са: ефектът на намаляване на стойността на COD е добър и цената е ниска. От гледна точка само на оперативните разходи, те са само по-високи или равни на UV/TiO2 метод. Много по-ниска от UV/О3(включително О3 каталитично окисление) или PMS окислителни методи. Следователно, в световен мащаб, сред модерните методи за окисление, само Fenton или UV/Fenton има по-успешни случаи на приложение в областта на пречистването на отпадъчни води, докато други модерни технологии за окисление имат по-малко успешни случаи поради инвестиции,оперативни разходи или други фактори.
Производственият процес на
Основният процес е описан по следния начин:
Отпадъчните води първо влизат в кондициониращия резервоар за хомогенизиране на качеството на водата и след това влизат в системата за последваща предварителна обработка за предварителна обработка. Процесът на предварителна обработка може да постигне деемулгиране и премахване на непрозрачните суспендирани вещества от водата, като в същото време предварителната обработка може също да намали до известна степен органичните замърсители в отпадъчните води и да намали цената и трудността на последващото третиране.
Отпадъчните води след предварително третиране постъпват в междинния резервоар за временно съхранение. Отпадъчните води в междинния резервоар се тестват от вкл-система за откриване на линия за необходимото съдържание на замърсители и нейните параметри се използват като основни параметри на системата за автоматично управление за контрол на дозировката на следващите лекарства. Контролът на дозировката на последващите лекарства, като катализатори и окислители, може да се контролира ръчно или автоматично.
След дозиране на отпадъчната вода в дозиращия резервоар, тя отива в резервоара за UV окисление за UV обработка. След UV третиране, отпадъчната вода се изхвърля в последващия резервоар за обратно извикване на рН, добавяйки оптимизирания агент и регулирайки стойността на рН, и след това в последващата система за утаяване с флокулация за третиране с утаяване. Отпадъчните води след пречистване на валежите могат да се изхвърлят директно.
След третиране съдържанието на различни замърсители, като стойност на COD или йони на тежки метали, е ефективно намалено. Ако е необходимо последващо биохимично третиране, биоразградимостта на отпадъчните води се подобрява.
Производство на оборудване
Капацитет и размер
Име на устройството |
Капацитет за обработка (тона/ден) |
Мощност на UV лампата (kW) |
Инсталирана мощност (kW) |
Работна мощност (kW) |
Размер на оборудването (Л×У×з (м) |
Разширено окисление Интегрирано оборудване |
200 |
2.5 |
15 |
10 |
6×2.1×2.2 |
400 |
5.0 |
30 |
25 |
12×3×3 |
|
600 |
7.6 |
45 |
40 |
2.1×5.8×2.1 |
|
800 |
10 |
60 |
50 |
6.5×2.8×2.8 |
Често задавани въпроси
Въпрос: Какво става, ако каналът за течност на тръбния топлообменник е блокиран?
О: Редовна поддръжка и почистване, ако е сериозно запушване, може да се наложи изключване и механично почистване или химическо почистване.
В: Как да подобрим ефективността на топлообмена на тръбните топлообменници?
О: Дебитът на течността може да бъде оптимизиран, за да се гарантира, че няма натрупване и запушване; Изберете ефективни материали за топлообменник и подходящ дизайн на пътя на потока във фазата на проектиране; Поддържането на правилния температурен градиент също е от ключово значение за подобряване на ефективността.
Въпрос: Защо възниква корозия в тръбните топлообменници?
О: Корозията може да се дължи на наличието на корозивни вещества в течността или поради неправилен избор на материал. Решенията включват използване на корозия-устойчиви материали, като неръждаема стомана, или добавяне на консерванти.
Въпрос: Какво става, ако има теч в тръбния топлообменник?
О: Първо трябва да определите местоположението на теча, което може да е причинено от износване на тръбата, повреда на съединението или стареене на уплътнението. В зависимост от местоположението и степента на теча може да се наложи повредената част да бъде поправена или заменена.
В: Как посоката на флуидния поток на тръбния топлообменник влияе върху ефекта на пренос на топлина?
О: Като цяло, противоток (тоест горещият флуид и студеният флуид текат в противоположни посоки) осигурява по-висока ефективност на топлообмена, тъй като по този начин може да се получи по-равномерен топлопренос, задвижван от температурната разлика. Паралелен поток (две течности, протичащи в една и съща посока) може да е подходящо за някои специфични приложения, но е по-малко ефективно.
Предишен: Няма повече
Следващия: Усъвършенствана окислителна инсталация за решения за чиста вода